Detection of Natural Abundance Nitrogen-15 through Phosphorus-31 Using Pulsed Field Gradients

Rodrigo J. Carbajo*,1 and Fernando López-Ortiz^{+,2}

*Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; and †Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain

Received July 7, 2000; revised September 25, 2000

DEDICATED TO PROF. DR. H. GÜNTHER ON THE OCCASION OF HIS 65TH BIRTHDAY

NMR characterization of natural abundance ¹⁵N in phosphorus-nitrogen compounds can be performed through ³¹P using inverse detection methods. When the ³¹P-¹⁵N scalar coupling is small, its observation is greatly disturbed by the residual signal coming from the 99.6% abundant ¹⁴N isotopomer that usually is not completely suppressed by the phase cycle of the sequence. The combined use of pulsed field gradients to suppress this residual signal and the enhanced sensitivity ³¹P, ¹⁵N{¹H}-esHSQC experiment affords artifact-free spectra with good signal-to-noise ratio, which allows the accurate measurement of ¹⁵N NMR parameters such as chemical shifts and coupling constants with the benefits of phosphorus detection. © 2001 Academic Press

Key Words: ¹⁵N; ³¹P; PFG; HSQC; triple resonance.

INTRODUCTION

NMR data originating from the nitrogen-15 nucleus can provide good insight into a wide range of physical and chemical properties of organic, inorganic, and biomolecules: coordination mode, protonation, hydrogen bonding, configurational geometry, conformational relations, cis-trans or syn-anti stereochemistry, equilibrium systems, reaction mechanisms, biosynthesis, etc. (1, 2). However, the detection of ¹⁵N in NMR is not always straightforward. The isotope nitrogen-15 has a very low natural abundance (0.37%), and a small and negative gyromagnetic constant, which results in a very low receptivity. Additionally the usually long T_1 values for ¹⁵N increase the difficulties of its direct detection (3). In the case of biomolecular NMR, the nowadays-standard use of nitrogen-15-labeled samples has overcome the problem to observe ¹⁵N. However, this method is not of general applicability. The preparation of ¹⁵N-labeled organic and inorganic synthetic compounds normally requires the use of very expensive materials and troublesome procedures. For this kind of molecules polarization transfer and inverse detection schemes can partially solve the problem, the latter methods usually giving better results. They select the nitrogen-15 nuclei scalarly coupled to a nucleus of high receptivity (mainly ¹H), eliminating throughout the experiment the signals coming from the abundant isotope ¹⁴N (99.63%).

As mentioned above, the ¹H nucleus has been traditionally used for the indirect detection of ¹⁵N in natural abundance. although the methodology can be extended to other highly receptive nuclei. These alternative nuclei have to be used when no protons are available in the molecule under study, or the ^{15}N – ^{1}H coupling is very small or simply does not exist (4). Phosphorus-31 represents the best choice for a large number of organic and organometallic compounds. It is a 100% abundant $\frac{1}{2}$ spin nucleus and has been extensively employed in the indirect detection of metal nuclei (5). Also some biomolecular NMR experiments have taken advantage of the presence of phosphorus in nucleotides (6). In spite of its general availability, there are relatively few examples in the literature making use of the ³¹P nucleus for the characterization of nitrogen-15 in nonbiological compounds. The first applications were based on phosphorus-to-nitrogen polarization transfer schemes INEPT (7) and DEPT (8, 9). For the ³¹P and ³¹N pair of nuclei indirect detection techniques may afford higher S/N ratios than polarization transfer methods by a factor $(\gamma_P/\gamma_N)^{3/2} = 13.3$. Recently, we have reported the first application of ¹⁵N NMR data measurements using indirect detection through phosphorus (10, 11) based on the HMQC (12) pulse scheme. Throughout the experiment the protons are continuously decoupled to suppress the ³¹P-¹H coupling, thereby increasing the signal-tonoise ratio.

The HMQC experiment showed a good sensitivity even for broad signals which is especially important in the natural abundance determination of ¹⁵N in compounds where the phosphorus is bonded to two nitrogen atoms, as in polyphosphazenes, due to second-class relaxation coming from the quadrupolar ¹⁴N nucleus coupled to ³¹P (*13*). The combination of 1D and 2D experiments afforded ¹⁵N chemical shifts and ³¹P–¹⁵N coupling constants as well as the measurement of isotopic

¹ Present address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

² To whom correspondence should be addressed. E-mail: flortiz@ualm.es.

FIG. 1. Pulse scheme of the ³¹P, ¹⁵N{¹H} HSQC with enhanced sensitivity experiment. Narrow and wide bars correspond to flip angles of 90° and 180°, respectively. All pulses phases are *x*, unless specified. The pulse widths used were 9.6 and 23 μ s for ³¹P and ¹⁵N, respectively, using an attenuation level of 1 dB for both heteronuclei. Composite pulse decoupling on the ¹H channel is used throughout the entire pulse sequence, with a ¹H pulse of 85 μ s for an attenuation level of 23 dB. The delay Δ is set according to the size of the coupling to detect, following the relation $\Delta = 1/4J$. The time τ has the same duration as the pulsed field gradient (1 ms). In the 1D version of the experiment the time t_1 is made constant. Quadrature in the F_1 dimension is obtained by the *echo–antiecho* method, recording every transient twice and changing the sign of G_2 in the second scan. Gradients are sine-bell shaped, *Z*-axis directed, with durations of 1 ms each and peak amplitudes (G/cm) $G_1 = 40$, $G_2 = \pm 10$.

effects induced by the substitution of ¹⁴N by ¹⁵N. However, the reliability of the method dramatically diminishes when trying to observe very small ³¹P–¹⁵N couplings (1–5 Hz) as a consequence of the overlap of the multiplet with the residual signal coming from the ³¹P coupled to ¹⁴N, not perfectly suppressed by the phase cycling of the sequence. The most evident alternative to effectively suppress this residual signal and observe the small couplings is the use of pulsed field gradients (*14*).

In this paper we describe for the first time the application of an indirect detection method to observe natural abundance ¹⁵N through ³¹P incorporating pulsed field gradients. The enhanced sensitivity HSQC pulse sequence is adapted for this purpose, allowing accurate determination of ¹⁵N chemical shift parameters and in particular small coupling constants, not easily accessible through the known preexistent methods.

RESULTS

The pulse sequence applied (Fig. 1) is the enhanced sensitivity HSQC (esHSQC) that includes pulsed field gradients and makes use of the *echo–antiecho* protocol by changing the sign of the last gradient (*15*). It has been converted into a tripleresonance experiment introducing the ¹H decoupling throughout the experiment to eliminate the ³¹P–¹H couplings. As far as we know, this is the first time an HSQC experiment is used to detect ¹⁵N through ³¹P, with and without pulsed field gradients. The proportional amplitude of the gradients has to be calculated according to the gyromagnetic ratios of the two nuclei involved (in this case $\gamma_P = -3.996\gamma_N \sim -4\gamma_N$), resulting in a ratio 4:±1 for the pulse sequence depicted in Fig. 1.

The benefits arising from the use of the pulsed field gradients in the esHSQC are readily seen when we compare the results of this experiment with those obtained with the phase-cycled pulse sequences HMQC and HSQC. A 1D ³¹P, ¹⁵N{¹H} spectrum was acquired with the three pulse sequences for a sample of *P*-(diphenyl)methyl(*N*-methoxycarbonyl)phosphazene, **1**, which shows a ${}^{1}J({}^{31}P, {}^{15}N)$ coupling of 37.0 Hz (Fig. 2). The ${}^{15}N$ satellites coming from the coupling with the phosphorus nucleus can be clearly seen in all three ${}^{31}P$ spectra. Traces (a) and (b) in Fig. 2 have been obtained with the phase-cycled pulse schemes HMQC and HSQC, respectively, while spec-

FIG. 2. Sections of the 161.98-MHz (400 MHz for ¹H, Bruker AMX400) 1D ³¹P, ¹⁵N{¹H} experiments showing the ³¹P, ¹⁵N doublet for a 0.6 M sample of *P*-(diphenyl)methyl(*N*-methoxycarbonyl)phosphazene, **1**, in CDCl₃. All experiments were recorded at 298 K with 256 scans, ³¹P spectral width of 3000 Hz, preacquisition delay of 3 s, and coupling evolution time of 13.9 ms for a total duration of 31 min. Processed with an exponential weighting function (LB = 1). (a) HMQC sequence without pulsed field gradients, (b) HSQC without PFG, and (c) using the enhanced sensitivity HSQC pulse sequence depicted in Fig. 1, with gradient amplitudes 40:-10. Spectra (a) and (b) have been acquired without refocusing delay to minimize signal intensity losses. The relative intensities of the signals are 1:0.92:0.75.

trum (c) corresponds to the PFG esHSQC sequence. In terms of sensitivity, the HSQC-based pulse sequences show lower S/Nratio than the HMQC experiment (S/N) for spectra a:b:c is 1:0.92:0.75). The small intensity differences observed between the spectra (a) and (b) may be assigned to the increased number of pulses of the HSQC vs the HMQC pulse scheme. For the experiment including pulsed field gradients a larger reduction in the S/N could be expected mainly because one of the coherence pathways giving rise to the signal is effectively suppressed by the gradients. Furthermore, the PFG esHSQC has the longest duration and increased number of pulses with respect to the other two experiments, factors that may result in a diminished S/N. The loss of only 25% in sensitivity compared with the HMQC experiment indicates a very good performance of the PFG esHSQC sequence. Even so, the main feature of the PFG esHSQC experiment is that it provides the expected perfect suppression of the residual signal coming from the ³¹P-¹⁴N isotopomers as can be observed in spectrum (c), Fig. 2, whereas the phase cycle of the nongradient HMQC (a) and HSQC (b) is unable to completely eliminate the abovementioned signal.

In the example above the relative large size of the ${}^{31}P-{}^{15}N$ coupling does not interfere with the residual signal. α -Azidophosphazene, 2 (16), is a more challenging compound to prove the usefulness of the new method for the measurement of small ³¹P–¹⁵N coupling constants. This molecule presents four nitrogen atoms that may be, a priori, detected through the phosphorus provided that there is a resolved ³¹P-¹⁵N coupling. The 2D ³¹P, ¹⁵N{¹H} experiments acquired without and with gradients are given in Fig. 3. The nongradient HMQC TPPI experiment (a) shows two correlations between ³¹P and ¹⁵N, corresponding to nitrogen atoms N¹ ($\delta = -293.0$ ppm) and N² $(\delta = -302.9 \text{ ppm})$, while a hypothetical cross peak arising from nitrogens N³ and N⁴ would be overlapped with the band of noise generated by the residual signal not suppressed by the phase cycle. Instead, in the PFG esHSQC a third cross peak can be observed and its chemical shift determined ($\delta(N^3)$) = -132.3 ppm). A further advantage of the 2D PFG esHSQC experiment comes from the expected sensitivity increment compared with the phase-cycled one, reaching a 26% S/N increase in the case shown.

The inherent low resolution of the 2D experiments precludes an accurate measurement of the coupling constants between the ³¹P and ¹⁵N nuclei. Therefore it is necessary to record high-resolution 1D spectra as shown in Fig. 4. The different spectra have been acquired with and without gradients, and the evolution times in the sequence optimized for the various ranges of coupling constants to be measured. The first pair of experiments (a) and (d) was set to detect the largest coupling between the phosphorus atom and nitrogen N¹. While this coupling is clearly observed in both experiments (¹J_{PN} = 39.9 Hz), in the PFG-acquired spectrum (d) the coupling with nitrogen N² (indicated with *) can be guessed from the noise, whereas in the phase-cycled spectrum (a) the intense dispersion residual signal precludes its observation. Any-

FIG. 3. Sections of the 2D ³¹P, ¹⁵N{¹H} spectra of **2** (0.25 M, CDCl₃). Both experiments were recorded at 298 K with 128 scans and 128 increments in t_1 , spectral width of 1300 and 12,100 Hz in F_2 and F_1 , respectively, preacquisition delay of 2 s, and coupling evolution time of 60 ms for a total duration of 10 h 20 min. (a) HMQC TPPI experiment without PFG showing just two correlations of the ³¹P with nitrogens N¹ and N². Cross peaks are in antiphase because no refocusing delay was used to minimize magnetization losses. (b) Enhanced sensitivity HSQC pulse sequence of Fig. 1, which besides the correlations seen in spectrum (a) shows an additional cross peak with N³. The 1D projections in the upper part of the 2D spectra have been acquired with the 1D version of the pulse sequences.

way, the coupling between the phosphorus and N² can be measured in both cases when the pulse sequences are optimized for this coupling (spectra (b) and (e), ${}^{2}J_{PN} = 9.1$ Hz). But the most remarkable improvement achieved with the PFG esHSQC experiment comes when trying to detect and measure very small ${}^{31}P^{-15}N$ couplings as that arising from nitrogen N³. In the case of the phase-cycled experiment set to detect very small couplings (spectrum (c), Fig. 4, evolution time = 120 ms) the intense residual signal prevents the observation of any multiplet. In contrast, the PFG spectrum (f) shows a clean doublet coming from the threebond coupling of the phosphorus with nitrogen N³ (${}^{3}J_{PN} = 4.0$ Hz).

CONCLUSIONS

We have described the first pulsed field gradient experiment based on the PFG esHSQC sequence for the detection of

FIG. 4. 1D ³¹P, ¹⁵N{1H} spectra of **2**, recorded at 298 K to observe the couplings between ³¹P and the different nitrogen atoms in the molecule. Every experiment was recorded with 1024 scans, 2 s of preacquisition delay, for a total duration of 3 h and a final resolution of 0.03 Hz/pt. Spectra (a)–(c) were recorded with the HMQC sequence without PFG, and (d)–(f) were recorded using the enhanced sensitivity HSQC experiment depicted in Fig. 1. Spectrum (c) was acquired without refocusing in order to distinguish the smallest ³¹P, ¹⁵N coupling from the residual ³¹P, ¹⁴N signal. The evolution time for every pair of experiments is (a), (d) = 13.4 ms; (b), (e) = 34 ms; and (c), (f) = 120 ms.

natural abundance ¹⁵N NMR parameters through ³¹P. Artifactfree 2D spectra are obtained with enhanced sensitivity compared to the phase-cycled HMQC scheme. The resulting highquality spectra allow the observation of ³¹P, ¹⁵N correlations arising from very small couplings, which would be otherwise obscured by the residual signal of the ³¹P, ¹⁴N isotopomers. The precise values of these coupling constants can be measured by carrying out the experiment in the 1D mode. The importance of this type of experiments will show up mainly in the detection of natural abundance ¹⁵N for organic (*17*) and inorganic molecules (*18*) where no ¹H atom is available to be used as the source of magnetization.

ACKNOWLEDGMENTS

We thank the Spanish Ministerio de Ciencia y Tecnología for financial support (PB97-0587-C02-01) and a predoctoral fellowship to R.J.C. Dr. J. L. Neira is gratefully acknowledged for helpful discussions on the pulse sequences.

REFERENCES

- J. Mason, Nitrogen, in "Multinuclear NMR" (J. Mason, Ed.), pp 335–368, Plenum Press, New York (1987).
- M. Witanowski, L. Stefaniak, and G. A. Webb, Nitrogen NMR Spectroscopy, Annu. Rep. NMR Spectrosc. 18, 1–737 (1986).

- G. C. Levy and R. L. Lichter, "Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy," Wiley, New York (1979).
- 4. There is one report of the application of polarization transfer from ¹⁹F to ¹⁵N via INEPT to the study of some perfluorocompounds: A. Costa, M. Tato, and R. S. Matthews, N-15 INEPT spectra of some perfluoroazines, *Magn. Reson. Chem.* 6, 547–548 (1986).
- F. López-Ortiz and R. J. Carbajo, Applications of polarization transfer and indirect detection NMR spectroscopic methods based on phosphorus-31 in organic and organometallic chemistry, *Curr. Org. Chem.* 2, 97–130 (1998).
- G. Varani, F. Aboul-ela, and F. H. T. Allain, NMR investigation of RNA structure, *Prog. NMR Spectrosc.* 29, 51–127 (1996).
- S. J. Berners-Price, M. J. Dimartino, D. T. Hill, R. Kuroda, M. A. Mazid and P. J. Sadler, Tertiary phosphine complexes of gold(I) and gold(III) with imido ligands—¹H, ³¹P and ¹⁵N NMR-spectroscopy, antiinflammatory activity, and X-ray crystal-structure of (phthalimido) (triethylphosphine)gold(I), *Inorg. Chem.* **24**, 3425–3434 (1985).
- D. Gudat, Polarization transfer between heteronuclei—application of ³¹P, ¹⁵N-polarization transfer techniques in ¹⁵N-NMR spectroscopy of phosphorus–nitrogen compounds, *Magn. Reson. Chem.* 24, 925–930 (1993).
- D. Gudat, Applications of heteronuclear X, Y-correlation spectroscopy in organometallic and organoelement chemistry, Annu. Rep. NMR. Spectrosc. 38, 139–202 (1999).
- F. López-Ortiz, E. Peláez-Arango, and P. Gómez-Elipe, Nitrogen-15 NMR spectroscopy of phosphazenes based on phosphorus-31 detection, *J. Magn. Reson. A* **119**, 247–251 (1996), doi: 10.1006/jmra.1996.0080.
- E. Peláez-Arango, F. J. García-Alonso, G. Carriedo, and F. López-Ortiz, ¹⁵N NMR spectroscopy of cyclotriphosphazenes and polyphosphazenes based on ³¹P, ¹⁵N HMQC correlations, *J. Magn. Reson. A* **121**, 154–159 (1996), doi:10.1006/jmra.1996.0155.
- A. Bax, R. H. Griffey, and B. L. Hawkins, Correlation of proton and ¹⁵N chemical shifts by multiple quantum NMR, *J. Magn. Reson.* 55, 301–315 (1983).
- A. Abragam, "The Principles of Nuclear Magnetism," Oxford Univ. Press, London (1983).
- J. Keeler, R. T. Clowes, A. Davis, and E. D. Laue, Pulsed-field gradients—Theory and practice, *Methods Enzymol.* 239, 145–207 (1994).
- L. E. Kay, P. Keifer, and T. Saarinen, Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity, *J. Am. Chem. Soc.* **114**, 10663–10665 (1992).
- J. Álvarez-Gutiérrez, C. Andújar-Sánchez, I. Pérez-Álvarez, and F. López-Ortiz, Electrophilic ammination of phosphazenes, manuscript in preparation.
- F. López-Ortiz, E. Peláez-Arango, B. Tejerina, E. Pérez-Carreño, and S. García-Granda, Solution-state, solid-state, and calculated structures of an alpha-lithiated monophosphazene, *J. Am. Chem. Soc.* 117, 9972–9981 (1995).
- G. A. Carriedo, F. J. García-Alonso, J. L. García, R. J. Carbajo, and F. López-Ortiz, Synthesis and ¹H-, ¹⁵N-, ³¹P-, ¹⁸³W-multinuclear magnetic resonance study of the cyclotriphosphazenes [N3P3(dobp)2(OC5H4N-4)(2)] and [N3P3(dobp)(OC5H4N-4)(4)] and their W(CO)(5) complexes (dobp=2,2'-dioxybiphenyl), *Eur. J. Inorg. Chem.* 1015–1020 (1999).